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Effect of Roughness Differences on the
Unbinding of Interfaces'

C. J. Boulter®>? and A. L. Stella*

In recent years there has been considerable interest in the effect of disorder on
the nature and universality of wetting transitions. One of the most frequently
studied systems is that in which geometrical disorder is present in the form of
substrate roughness. In 2D there is compelling evidence that the critical wetting
transition found for a flat substrate may become first order when surface rough-
ness is included. In particular, if the roughness exponent of the wall exceeds the
anisotropy index of interface fluctuations in the bulk, then first-order wetting is
found. Here we extend the investigation of roughness-induced effects to the
situation in which we have unbinding of two fluctuating interfaces characterized
by different roughness exponents {; and {, (e.g., a fluid membrane depinning
from a liquid—vapor interface) in the absence of quenched disorder. In this case
symmetry prevents a change in order of the unbinding transition as the rough-
nesses are varied; however, the critical behavior is again found to be controlled
by the larger of {; and {,. In addition, our results depend quantitatively on a
nonuniversal parameter related to the relative curvature of the two interfaces
whenever {; # (5.
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1. INTRODUCTION

In this paper we present the results of an analytic study into the effect of
relative roughnesses on the nature and universality of the unbinding transi-
tion between two fluctuating interfaces in three dimensions. This study is
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motivated by intriguing recent results on the importance of geometric dis-
order in 2D upon the critical wetting transition [ 1-3], and hence, we begin
by providing a brief summary of the pertinent results of those studies here.

The wetting transition refers to the situation in which an interface
between two coexisting phases unbinds from an attractive substrate. The
transition may be continuous (or critical) or first-order depending on the
dimensionality, disorder, and strength of the substrate forces. For the
moment we consider the case of short-range substrate forces in 2D, for
which it is known that generally only continuous wetting transitions are
predicted both in the absence of disorder and in the presence of bulk dis-
order (for a review, see Ref. 4). The results which interest us arise when
geometrical disorder is present via the inclusion of a rough substrate with
self-affine geometry, as has been observed in experimental situations [5].
The roughness is characterized by the exponent {5 such that transverse
displacements of the wall profile, denoted [/, have an average width
[ (x) — L (X")] o |x —x'|*w with 0 < ¢, < 1. A bulk interface is known to
display a similar scaling with roughness, or anisotropy exponent {,—in 2D,
{o= 1 if the bulk is ordered and {,= 2 in the case of random bonds in the
bulk [4].

Direct competition between the roughnesses of the wall and the fluc-
tuating interface has led to the prediction of roughness induced first-order
wetting transitions. In particular, numerical studies based on transfer
matrix calculations for a model on a square lattice have shown that the
wetting transition in a pure system is first-order for {,; sufficiently larger
than 1 but remains continuous and in the same universality class as the
flat-wall case for low enough values of {,, [1]. Similar results have been
found in the presence of bulk disorder with first-order wetting if {, exceeds
2 and critical wetting when {,,<% [2]. This behavior has been further
elucidated using replica and functional renormalization group methods,
where analysis of the fixed points clearly indicates that the crossover from
continuous to first-order wetting occurs precisely at a threshold given by
G [3]

It is interesting to speculate whether the same behavior holds in 3D,
where for a pure system {, =0 so that any surface roughness (which would
surely be present in an experimental system) would lead to first-order transi-
tions. The studies described above cannot be easily extended to the 3D
case, so in this paper we consider the related phenomena of the unbinding
of two fluctuating interfaces in 3D to gauge the importance of roughness
effects. The remainder of the paper is arranged as follows. In Section 2 we
introduce our two-interface model and briefly present a functional renor-
malization group treatment which we analyze analytically and numerically.
Section 3 is dedicated to conclusions and future avenues of research.
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2. UNBINDING OF TWO FLUCTUATING INTERFACES

2.1. Background

We consider the case of two interfaces unbinding in a d-dimensional
system in the absence of bulk disorder. The location of the interfaces is
denoted by /;(x), i =1, 2, where x represents the d — 1 directions in a plane
approximately parallel to the interfaces. Ignoring interface overhangs, we
can describe this situation using an effective Hamiltonian,

A1, L] =jdx{%K1(Vﬂ111)2+ 3 Ko(VP2 1)+ Ul — 1)} (1)

where the f; are related to the anisotropy exponent of the relevant interface
via the relationship (f;,—{;)=(d—1)/2, i=1,2. For example, for a pure
system a simple fluid interface is characterized by f=1 [or {=(3 —d)/2],
while a tensionless membrane has f=2 [or {=(5—d)/2]. The K, are
stiffness or rigidity coefficients, and the potential U(/,—/;) models the
interactions of the two interfaces. A further interaction term describing the
coupling of corrugations of the two interfaces may also be included. This
can be incorporated into Eq. (1) via the inclusion of a term K4(VA1,)-
(V%1,) in the Hamiltonian density; however, the relevant stiffness coef-
ficient (K;) must be zero since the two interfaces completely decouple in
the limit of /,—1/; —» 0. If one allows position-dependent contributions in
the stiffness coefficients (which is beyond the scope of this paper), then K,
should no longer be ignored, and one may anticipate that its inclusion may
tend to drive the unbinding transition first-order [6].

In this study of unbinding it is the relative displacement /, —/; which
1s of interest, and so we aim to introduce a linear transformation which will
isolate the behavior of the interfacial separation from the remaining coor-
dinates. To this end we rewrite the kinetic (or gradient) terms in Eq. (1)
using a momentum space representation,

d 1 ~ 1 ~
o) = [ ot (3 K TP+ 5 Kop™ LR (2)

where we use tildes to denote a Fourier-transformed function. In this
formulation we identify the appropriate linear transformation [ 7]

~ - K, p*5 ~
L(p)=L(p) —WI(P)
(3)
-~ - K, p?h ~
L(p) = L(p) + 37 T(p)

K, p*h + K, p*
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where /=1, —/,, and the new coordinates / and L are completely separated
in the effective Hamiltonian. We observe that for two identical interfaces
(when S, =pf,), the transformation [ Eq. (3)] reduces to that found in the
study of binary mixtures, where L may be identified as the “center of mass”
coordinate [8]. Upon integrating out this coordinate, we are left with an
effective interface model for the interfacial separation of the form

d K, p* _
b ey e U GG U

Without loss of generality, we, henceforth, assume that f,>f, and
define

e=f—p>=20 (3)

as a measure of the relative roughness difference of the two interfaces.
A typical example would be the unbinding of a fluid membrane (£, =2)
from a liquid—-vapor interface (5, =1 and hence e =1) in d = 3 as is observed
in the preparation of membranes for biological applications. However, we
need not restrict ourselves to a specific value of ¢ at this stage.

2.2. The Functional Renormalization Group

In this section we apply the techniques of the functional renormaliza-
tion group (RG) to analyze the unbinding behavior in our model [4, 9].
Here we provide only a sketch of the main ideas and results; a more
detailed treatment is given in Ref. 7.

First, we note that the effective model [ Eq. (4)] contains an implicit
momentum cutoff, e.g., 4. The RG procedure consists of integrating out
Fourier modes of the field / with wave numbers in the range A/b < |p| < 4
for some b>1 and then rescaling x — bx to bring the cutoff back to its
original value. In addition, we must rescale / in such a way that the RG
transformation can reach a fixed point. Typically the scaling factor is
simply the anisotropy exponent, but in our system this is not uniquely
defined and some care is required. Analysis shows that to avoid the
presence of a dangerous irrelevant variable [10] in the scheme, we must
use the rescaling / — /b* [7]. With this rescaling in place, the stiffness K;
is an invariant under the RG transformation, while K, is subject to the
following flow equation (b =¢7):

dIn(K,)
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The growth of K, under RG flow is not a deficiency of the approach since,
as we shall see, this parameter appears only in the combination 1/K, in the
analysis that follows.

The flow of K, is coupled with that of the interface potential U(/). In
particular, if we work only to first-order in U, then we can perform an
exact linear functional RG which yields the flow equation

oU 0U, oL, 47\ o
K K,

Y (d—1 Lo il
o A= DUHGIZr+ PR

where Q =A"%1/[(4n)“~ Y2 ((d—1)/2)]. At this stage we can already
deduce some key features of the unbinding behavior. First, we note that
in the limit of large ¢ which is appropriate for considering fixed point
behavior, the factor 1/K, — 0 and the flow equation (7) reduces to that
found when considering the unbinding of a fluctuating interface (with stiff-
ness K, and anisotropy exponent {,) from a planar wall (see, e.g., Refs. 4
and 11). Consequently we might reasonably expect critical behavior in the
same universality class as that of unbinding from planar substrates.

The dominance of {; over {, is a direct consequence of the assumption
£>0 [recall Eq. (5)]. If instead f,> ff;, then a similar analysis would
result in the unbinding behavior being controlled by the properties of inter-
face “2.” Hence, in general, the important anisotropy exponent for the
transition is max({,, {,), in complete analogy with unbinding from rough
surfaces discussed earlier. This behavior is also the one suggested by physical
intuition since the anisotropy exponent of the relative coordinate /=1, — [,
must be dominated by max({;, {,).

To provide a more quantitative analysis, it is convenient to also dis-
cuss the RG transformation beyond linear order in the interface potential.
Such schemes are approximate and a number of variations are possible but
here we concentrate on the nonlinear functional RG developed by Lipowsky
and Fisher [11] based on Wilson’s approximation scheme of expanding
the fast modes in the fluctuating field in terms of a complete set of localized
wavefunctions. This approach has proved to be particularly well suited to
treating interface problems (see also Ref. 12).

We leave aside the details of the calculation here (these can be found
in Ref. 7) and concentrate on the main results. The flow equation [ Eq. (6)]
is accurate to all orders and is now supplemented by the following equa-
tion for the renormalized binding potential:

oU oU s 1 /1  A%\o*U
= A=) U+l +Q4 lln{l+A2ﬂl<K1+K2> 512} (8)
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where 2 is the constant given after Eq. (7). Once again, we observe that,
for large ¢, the inverse stiffness 1/K, —» 0 and the flow equation for U
reduces to that found when studying the unbinding of an interface (with
roughness exponent {; and stiffness K;) from a flat substrate [ 11]. Hence
the fixed-point potentials of the two systems must be the same.

However, we stress that this observation is not sufficient to determine
the critical behavior. For example, for wetting in a system with short-range
forces, it has been demonstrated that there exists a large class of fixed-
point potentials [ 13] (the precise number depending on the dimensionality
of space) but that typically only three have attractive manifolds: one
describing pinned interface situations, one for the wet regime with
unbound interfaces, and one between the domains of attraction of the
previous two, describing the transition-point behavior. Most notably,
ignoring position-dependent stiffness coefficients, this intermediate fixed-
point potential always describes critical wetting if the initial (bare) poten-
tial models a continuous transition, and hence no fluctuation-induced first-
order transitions can be predicted. In contrast, a recent study [12] has
demonstrated that if an extra parameter representing an additional stiff-
ness contribution is included in the RG flow, then additional fixed point
potentials may have attractive manifolds. This occurs even though the
additional parameter flows to zero and the binding potential flow equation
reduces to its standard form for large ¢, just as we observe in the present
study. Importantly, the outcome of the additional fixed points is a com-
pletely revised picture for the critical behavior with first-order wetting
being observed.

Hence, it is clear that we must consider the transient behavior in the
RG flow and not rely solely on the large- behavior. Thus we present a
more thorough investigation in the next subsection to determine properly
the critical behavior when fluctuation effects are included.

2.3. Numerical Study

To study the RG flow numerically, it proves convenient to use the RG
recursion relations for a fixed rescaling parameter b, rather than the flow
equations, (6) and (8). Furthermore, because of the simple nature of the
flow of K,, it is straightforward to solve for this parameter analytically,
and hence we need study only the recursion relation for the binding poten-
tial numerically. Finally, we introduce dimensionless variables via a simple
rescaling [ 7] such that z represents the dimensionless interface separation,
and V(z) the dimensionless interface potential. With these variables the
recursion relation takes the form [7]
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2 (> dy —y2
yW+ED(z) = —bd_lln{ exp( >
ﬁjo /1+2Z(b, N, d) 1+2(b, N, d)

_ W) _ W (phs

xexp< V(boiz + y) (b=1z y))} 9)

2

where we have introduced the nonuniversal function
, K,( A% /b*—1]

(b, N, d)zK(Zo)CszeN <b2§11> (10)

with K being the initial bare value of K,, and where the dimension
dependence is implicit in the exponents (,.

For concreteness here we specialize to the case d =3 and consider the
situation of a fluid interface unbinding from a membrane as discussed earlier.
Thus e=1, {; =1, and {, =0, and the parameter Z reduces to %,,_,;(b, N)
=[2K, 4*/KP7/[In b/(b*(b*—1))]. We compare this situation with the
cases of a membrane with rigidity K, unbinding from a planar wall and
two membranes, each of rigidity K, unbinding from one another. In both
situations the RG flow is also modeled by the recursion relation, Eq. (9),
but in the first case Z =%,,_,,(b, N)=0 VN, while in the second case ¥ =
Zy_m(b, N)=1 VN. Here, we take K, A4*/K{’ =1 (which is reasonable as
an order-of-magnitude estimate), and hence, Z,,_;(b~ 1, N) interpolates
between the two reference cases, starting at unity and reducing to zero for
large N.

In addition, we restrict our attention to the case of a bare potential
which is strictly short-range and assume for z >0,

VO(z)= —we ™ 4 7%= (11)

although the qualitative details of our results are unaffected by varying the
form of the short-range potential [ 7]. Here w is a measure of the deviation
from the mean-field unbinding temperature w oc TM* — T, and s> 0. We
further impose a “hard-wall” condition (¥(z <0)= o0) so that the interface
and membrane cannot pass through one another. For our numerical study
we have typically fixed the rescaling parameter to the value b =2, but we
note that we have checked that the results described below are robust to
other choices of b in the range 1.25<b <4.

To study the model, we vary the initial parameters w and s in the
potential and examine the development of ¥(z) under the recursion relation,
Eq. (9). The unbinding phase boundary is the locus of intermediate (unstable)
fixed points which separates the stable regions governed by the “pinned



502 Boulter and Stella

interfaces” and “unbound interfaces” fixed points. We find that the transi-
tion always remains second-order with an unbinding temperature, 77",
shifted below TM*. Furthermore, the unbinding temperature lies between
that for the two reference cases (assuming that all transitions have the same
mean-field unbinding temperature) such that 77" <T7 "< T7~", and
hence, the presence of additional roughness appears to aid the unbinding
process and lower the transition temperature (see also Section 3).

Finally, we have examined the critical exponent governing the unbinding
behavior using a numerical eigenperturbation analysis about the transitional
fixed point [ 7]. We find strong evidence for an inverse linear relationship,
in particular, we obtain I/~ |77~ —T|~% and ¢ =0.9940.02 on the
approach to unbinding. The same exponent is found for our reference cases,
suggesting that all the transitions are in the same universality class when one
considers purely short-range forces. Furthermore, Lipowsky and Leibler
[ 14] find precisely the same result, iy ~ 1, in their study of membrane-mem-
brane unbinding of both charged and uncharged membranes, where long-
range van der Waals forces have been included, indicating that the mem-
brane anisotropy exponent { may play a particularly dominant role in deter-
mining the critical behavior in these systems.

3. DISCUSSION AND GENERALIZATIONS

In this paper we have applied RG techniques to study unbinding of
two interfaces characterized by different roughness exponents. We have
observed that the important parameter for describing the transition is the
maximum roughness exponent. However, we have found no evidence for
roughness-induced first-order transitions analogous to those found for
unbinding from a rough substrate. This is almost certainly related to the
extra symmetry in considering two fluctuating surfaces in comparison to
one fluctuating and one fixed surface.

For simplicity we have concentrated on systems with purely short-
range forces and shown that the behavior of a membrane unbinding from
a fluid interface is, in some sense, intermediate between a membrane
unbinding from a flat substrate and a membrane unbinding from another
membrane. However, this result is sensitive to the value of the nonuniversal
ratio K=K, A?/K®. For 0 <K <1 the scenario above holds, while for
K>>1 the transition temperature of the membrane—interface transition is
lowered below that of the membrane-membrane transition (numerically
the crossover seems likely to occur at K ~ 1, although the precise value has
not been determined). Hence, the sequence of unbinding transitions that
one would observe for a stack of membranes pinned at a liquid-vapor
interface, as the temperature is increased, would be highly sensitive to this
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nonuniversal ratio. Prior to comparison with experimental results, however,
it will be necessary to consider the wide range of longer-range interactions
which may be present (see, e.g., Ref. 15).

Future work will be targeted at extending the analysis to unbinding of
an interface of arbitrary roughness from a rough substrate in dimensions
d> 2. Treatment of a self-affine substrate have proved problematic, but we
are confident that the introduction of a deterministic rough substrate will
allow progress to be made in this area.
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